
Final Keywords

The final keyword in java is used to restrict the user. The java final keyword can be used in

many context. Final can be:

1. variable

2. method

3. class

The final keyword can be applied with the variables, a final variable that have no value it

is called blank final variable or uninitialized final variable. It can be initialized in the

constructor only. The blank final variable can be static also which will be initialized in the

static block only. We will have detailed learning of these. Let's first learn the basics of final

keyword.

1) Java final variable

If we make any variable as final, we cannot change the value of final variable (It will be

constant).

Example of final variable

class Bike9{

 final int speedlimit=90;

 void run(){

 speedlimit=400;

 }

 public static void main(String args[]){

 Bike9 obj=new Bike9();

 obj.run();

 }

}

2) Java final method

If we make any method as final, we cannot override it.

Example of final method

class Bike{

 final void run(){System.out.println("running");}

}

class Honda extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

 public static void main(String args[]){

 Honda honda= new Honda();

 honda.run();

 }

}

3) Java final class

If we make any class as final, we cannot extend it.

Example of final class

final class Bike{}

class Honda1 extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

 public static void main(String args[]){

 Honda1 honda= new Honda1();

 honda.run();

 }

}

Polymorphism in Java

Polymorphism in Java is a concept by which we can perform a single action in different

ways. Polymorphism is derived from 2 Greek words: poly and morphs. The word "poly"

means many and "morphs" means forms. So polymorphism means many forms.

There are two types of polymorphism in Java: compile-time polymorphism and runtime

polymorphism. We can perform polymorphism in java by method overloading and

method overriding.

If we overload a static method in Java, it is the example of compile time polymorphism.

Here, we will focus on runtime polymorphism in java.

Compile-Time Polymorphism in Java

It is also known as static polymorphism. This type of polymorphism is achieved by

function overloading or operator overloading.Note: But Java doesn’t support the

Operator Overloading.

Runtime Polymorphism in Java

It is also known as Dynamic Method Dispatch. It is a process in which a function
call to the overridden method is resolved at Runtime. This type of polymorphism
is achieved by Method Overriding. Method overriding, on the other hand,
occurs when a derived class has a definition for one of the member functions of
the base class. That base function is said to be overridden.

Static Binding and Dynamic Binding

Connecting a method call to the method body is known as binding.

https://www.geeksforgeeks.org/dynamic-method-dispatch-runtime-polymorphism-java/
https://www.geeksforgeeks.org/overriding-in-java/

There are two types of binding

1. Static Binding (also known as Early Binding).

2. Dynamic Binding (also known as Late Binding).

Static binding

When type of the object is determined at compiled time (by the compiler), it is known as

static binding. If there is any private, final or static method in a class, there is static binding.

Example of static binding

class Dog{

 private void eat(){System.out.println("dog is eating...");}

 public static void main(String args[]){

 Dog d1=new Dog();

 d1.eat();

 }

}

Dynamic binding

When type of the object is determined at run-time, it is known as dynamic binding.

Example of dynamic binding

class Animal{

 void eat(){System.out.println("animal is eating...");}

}

class Dog extends Animal{

 void eat(){System.out.println("dog is eating...");}

 public static void main(String args[]){

 Animal a=new Dog();

 a.eat();

 } }

Abstract class in Java

A class which is declared with the abstract keyword is known as an abstract class It can

have abstract and non-abstract methods (method with the body).

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only

functionality to the user.

Another way, it shows only essential things to the user and hides the internal details, for

example, sending SMS where we type the text and send the message. we don't know the

internal processing about the message delivery.

Abstraction lets us focus on what the object does instead of how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%)

Abstract class in Java

A class which is declared as abstract is known as an abstract class. It can have abstract

and non-abstract methods. It needs to be extended and its method implemented. It

cannot be instantiated.

Points to Remember

 An abstract class must be declared with an abstract keyword.

 It can have abstract and non-abstract methods.

 It cannot be instantiated.

 It can have constructors and static methods also.

 It can have final methods which will force the subclass not to change the body of

the method.

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-constructor

Abstract Method in Java

A method which is declared as abstract and does not have implementation is known as

an abstract method.

Example of abstract method

1. abstract void printStatus();//no method body and abstract

Example of Abstract class that has an abstract method

abstract class Bike{

 abstract void run();

}

class Honda4 extends Bike{

void run(){System.out.println("running safely");}

public static void main(String args[]){

 Bike obj = new Honda4();

 obj.run();

}

}

Interface in Java

An interface in Java is a blueprint of a class. It has static constants and abstract methods.

The interface in Java is a mechanism to achieve abstraction. There can be only abstract

methods in the Java interface, not method body. It is used to achieve abstraction and

multiple inheritance in Java.

In other words, we can say that interfaces can have abstract methods and variables. It

cannot have a method body.

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java

Java Interface also represents the IS-A relationship. It cannot be instantiated just like

the abstract class.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

How to declare an interface?

An interface is declared by using the interface keyword. It provides total abstraction;

means all the methods in an interface are declared with the empty body, and all the fields

are public, static and final by default. A class that implements an interface must implement

all the methods declared in the interface.

Syntax:

interface <interface_name>{

// declare constant fields

// declare methods that abstract

// by default.

}

Note: Interface fields are public, static and final by default, and the methods are public and

abstract.

The relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends

another interface, but a class implements an interface.

Interface Example 1

interface printable{

void print();

}

class A6 implements printable{

public void print(){System.out.println("Hello");}

public static void main(String args[]){

A6 obj = new A6();

obj.print();

 }

}

Example 2

interface Drawable{

void draw();

}

//Implementation: by second user

class Rectangle implements Drawable{

public void draw(){System.out.println("drawing rectangle");}

}

class Circle implements Drawable{

public void draw(){System.out.println("drawing circle");}

}

//Using interface: by third user

class TestInterface1{

public static void main(String args[]){

Drawable d=new Circle();//In real scenario, object is provided by method e.g. get

Drawable()

d.draw();

}}

Multiple inheritance in Java by interface

If a class implements multiple interfaces, or an interface extends multiple interfaces, it is

known as multiple inheritance.

interface Printable{

void print();

}

interface Showable{

void show();

}

class A7 implements Printable,Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

A7 obj = new A7();

obj.print();

obj.show();

 }

}

Interface inheritance

A class implements an interface, but one interface extends another interface.

interface Printable{

void print();

}

interface Showable extends Printable{

void show();

}

class TestInterface4 implements Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

TestInterface4 obj = new TestInterface4();

obj.print();

obj.show();

 }

}

Static Method in Interface

 We can have static method in interface. Let's see an example:

interface Drawable{

void draw();

static int cube(int x){return x*x*x;}

}

class Rectangle implements Drawable{

public void draw(){System.out.println("drawing rectangle");}

}

class TestInterfaceStatic{

public static void main(String args[]){

Drawable d=new Rectangle();

d.draw();

System.out.println(Drawable.cube(3));

}}

Difference between abstract class and
interface

Abstract class and interface both are used to achieve abstraction where we can declare

the abstract methods. Abstract class and interface both can't be instantiated.

But there are many differences between abstract class and interface that are given below.

Abstract class Interface

1) Abstract class can have abstract and non-

abstract methods.

Interface can have only abstract methods. Since Java

8, it can have default and static methods also.

2) Abstract class doesn't support multiple

inheritance.

Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static

and non-static variables.

Interface has only static and final variables.

4) Abstract class can provide the

implementation of interface.

Interface can't provide the implementation of

abstract class.

5) The abstract keyword is used to declare

abstract class.

The interface keyword is used to declare interface.

6) An abstract class can extend another Java

class and implement multiple Java interfaces.

An interface can extend another Java interface only.

7) An abstract class can be extended using

keyword "extends".

An interface can be implemented using keyword

"implements".

8) A Java abstract class can have class members

like private, protected, etc.

Members of a Java interface are public by default.

Example of abstract class and interface in Java

Let's see a simple example where we are using interface and abstract class both.

//Creating interface that has 4 methods

interface A{

void a();//bydefault, public and abstract

void b();

void c();

void d();

}

//Creating abstract class that provides the implementation of one method of A interface

abstract class B implements A{

public void c(){System.out.println("I am C");}

}

//Creating subclass of abstract class, now we need to provide the implementation of rest of the m

ethods

class M extends B{

public void a(){System.out.println("I am a");}

public void b(){System.out.println("I am b");}

public void d(){System.out.println("I am d");}

}

//Creating a test class that calls the methods of A interface

class Test5{

public static void main(String args[]){

A a=new M();

a.a();

a.b();

a.c();

a.d();

}}

Package

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined

package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Simple example of java package

The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple{

 public static void main(String args[]){

 System.out.println("Welcome to package");

 }

}

How to compile java package

If we are not using any IDE, you need to follow the syntax given below:

javac -d directory java filename

For Example

javac -d . Simple.java

How to run java package program

we need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination. The .

represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If we use package.* then all the classes and interfaces of this package will be accessible

but not subpackages.

The import keyword is used to make the classes and interface of another package

accessible to the current package.

Example of package that import the packagename.*

1. package pack;

2. public class A{

3. public void msg(){System.out.println("Hello");}

4. }

5. //save by B.java

6. package mypack;

7. import pack.*;

8.

9. class B{

10. public static void main(String args[]){

11. A obj = new A();

12. obj.msg();

13. }

14. }

Output:Hello

2) Using packagename.classname

If we import package.classname then only declared class of this package will be accessible.

Example of package by import package.classname

1. package pack;

2. public class A{

3. public void msg(){System.out.println("Hello");

4. }

5. }

Example 2

1. package mypack;

2. import pack.A;

3.

4. class B{

5. public static void main(String args[]){

6. A obj = new A();

7. obj.msg();

8. }

9. }

10.
Output:Hello

3) Using fully qualified name

If we use fully qualified name then only declared class of this package will be accessible.

Now there is no need to import. But we need to use fully qualified name every time when

we are accessing the class or interface.

AD

It is generally used when two packages have same class name e.g. java.util and java.sql

packages contain Date class.

Example of package by import fully qualified name

1. //save by A.java

2. package pack;

3. public class A{

4. public void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. class B{

4. public static void main(String args[]){

5. pack.A obj = new pack.A();//using fully qualified name

6. obj.msg();

7. }

8. }
Output:Hello

Note: If we import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported

excluding the classes and interfaces of the subpackages. Hence, you need to import the

subpackage as well.

Java Arrays

Arrays are used to store multiple values in a single variable, instead of declaring

separate variables for each value.

To declare an array, define the variable type with square brackets:

String[] cars;

We have now declared a variable that holds an array of strings. To insert values
to it, you can place the values in a comma-separated list, inside curly braces:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

To create an array of integers, you could write:

int[] myNum = {10, 20, 30, 40};

Access the Elements of an Array

we can access an array element by referring to the index number.

This statement accesses the value of the first element in cars:

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.println(cars[0]);

Change an Array Element

To change the value of a specific element, refer to the index number:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

cars[0] = "Opel";

System.out.println(cars[0]);

Array Length

To find out how many elements an array has, use the length property:

Example

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.println(cars.length);

Loop Through an Array

we can loop through the array elements with the for loop, and use

the length property to specify how many times the loop should run.

The following example outputs all elements in the cars array:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (int i = 0; i < cars.length; i++) {

System.out.println(cars[i]);

}

Multidimensional Arrays

A multidimensional array is an array of arrays.

Multidimensional arrays are useful when you want to store data as a tabular

form, like a table with rows and columns.

To create a two-dimensional array, add each array within its own set of curly

braces:

Access Elements

To access the elements of the myNumbers array, specify two indexes: one for

the array, and one for the element inside that array. This example accesses the
third element (2) in the second array (1) of myNumbers:

Example

int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

System.out.println(myNumbers[1][2]); // Outputs 7

What is String in Java?

String is a sequence of characters. But in Java, string is an object that represents a

sequence of characters. The java.lang.String class is used to create a string object.

How to create a string object?

There are two ways to create String object

1.By string literal & 2. By new keyword

String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

2) By new keyword
1. String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non-pool) heap memory, and

the literal "Welcome" will be placed in the string constant pool. The variable s will refer to

the object in a heap (non-pool).

Java String Example

StringExample.java

1. public class StringExample{

2. public static void main(String args[]){

3. String s1="java";//creating string by Java string literal

4. char ch[]={'s','t','r','i','n','g','s'};

5. String s2=new String(ch);//converting char array to string

6. String s3=new String("example");//creating Java string by new keyword

7. System.out.println(s1);

8. System.out.println(s2);

9. System.out.println(s3);

10. }}

https://www.javatpoint.com/jvm-java-virtual-machine

The java.lang.String class provides many useful methods to perform operations on

sequence of char values.

No. Method Description

1 char charAt(int index) It returns char value for the particular

index

2 int length() It returns string length

3 static String format(String format, Object... args) It returns a formatted string.

4 static String format(Locale l, String format, Object...

args)

It returns formatted string with given

locale.

5 String substring(int beginIndex) It returns substring for given begin

index.

6 String substring(int beginIndex, int endIndex) It returns substring for given begin

index and end index.

7 boolean contains(CharSequence s) It returns true or false after matching

the sequence of char value.

8 static String join(CharSequence delimiter,

CharSequence... elements)

It returns a joined string.

9 static String join(CharSequence delimiter, Iterable<?

extends CharSequence> elements)

It returns a joined string.

10 boolean equals(Object another) It checks the equality of string with the

given object.

11 boolean isEmpty() It checks if string is empty.

https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-length
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-contains
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-equals
https://www.javatpoint.com/java-string-isempty

12 String concat(String str) It concatenates the specified string.

13 String replace(char old, char new) It replaces all occurrences of the

specified char value.

14 String replace(CharSequence old, CharSequence new) It replaces all occurrences of the

specified CharSequence.

15 static String equalsIgnoreCase(String another) It compares another string. It doesn't

check case.

16 String[] split(String regex) It returns a split string matching regex.

17 String[] split(String regex, int limit) It returns a split string matching regex

and limit.

18 String intern() It returns an interned string.

19 int indexOf(int ch) It returns the specified char value index.

20 int indexOf(int ch, int fromIndex) It returns the specified char value index

starting with given index.

21 int indexOf(String substring) It returns the specified substring index.

22 int indexOf(String substring, int fromIndex) It returns the specified substring index

starting with given index.

23 String toLowerCase() It returns a string in lowercase.

24 String toLowerCase(Locale l) It returns a string in lowercase using

specified locale.

25 String toUpperCase() It returns a string in uppercase.

https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-intern
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-touppercase

26 String toUpperCase(Locale l) It returns a string in uppercase using

specified locale.

27 String trim() It removes beginning and ending

spaces of this string.

28 static String valueOf(int value) It converts given type into string. It is an

overloaded method.

Vector in java

The Vector class is an implementation of the List interface that allows us to

create resizable-arrays similar to the ArrayList class.

Creating a Vector

Here is how we can create vectors in Java.

Vector<Type> vector = new Vector<>();

Here, Type indicates the type of a linked list. For example,

// create Integer type linked list

Vector<Integer> vector= new Vector<>();

// create String type linked list

Vector<String> vector= new Vector<>();

https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-trim
https://www.javatpoint.com/java-string-valueof
https://www.programiz.com/java-programming/arraylist

Methods of Vector

The Vector class also provides the resizable-array implementations of

the List interface (similar to the ArrayList class). Some of the Vector methods

are:

Add Elements to Vector

 add(element) - adds an element to vectors

 add(index, element) - adds an element to the specified position

 addAll(vector) - adds all elements of a vector to another vector

For example,

import java.util.Vector;

class Main {

 public static void main(String[] args) {

 Vector<String> mammals= new Vector<>();

 // Using the add() method

 mammals.add("Dog");

 mammals.add("Horse");

 // Using index number

 mammals.add(2, "Cat");

 System.out.println("Vector: " + mammals);

 // Using addAll()

 Vector<String> animals = new Vector<>();

 animals.add("Crocodile");

 animals.addAll(mammals);

 System.out.println("New Vector: " + animals);

 }

}
Run Code

https://www.programiz.com/java-programming/online-compiler

Output

Vector: [Dog, Horse, Cat]

New Vector: [Crocodile, Dog, Horse, Cat]

Access Vector Elements

 get(index) - returns an element specified by the index

 iterator() - returns an iterator object to sequentially access vector elements

For example,

import java.util.Iterator;

import java.util.Vector;

class Main {

 public static void main(String[] args) {

 Vector<String> animals= new Vector<>();

 animals.add("Dog");

 animals.add("Horse");

 animals.add("Cat");

 // Using get()

 String element = animals.get(2);

 System.out.println("Element at index 2: " + element);

 // Using iterator()

 Iterator<String> iterate = animals.iterator();

 System.out.print("Vector: ");

 while(iterate.hasNext()) {

 System.out.print(iterate.next());

 System.out.print(", ");

 }

 }

}
Run Code

https://www.programiz.com/java-programming/online-compiler

Output

Element at index 2: Cat

Vector: Dog, Horse, Cat,

Remove Vector Elements

 remove(index) - removes an element from specified position

 removeAll() - removes all the elements

 clear() - removes all elements. It is more efficient than removeAll()

For example,

import java.util.Vector;

class Main {

 public static void main(String[] args) {

 Vector<String> animals= new Vector<>();

 animals.add("Dog");

 animals.add("Horse");

 animals.add("Cat");

 System.out.println("Initial Vector: " + animals);

 // Using remove()

 String element = animals.remove(1);

 System.out.println("Removed Element: " + element);

 System.out.println("New Vector: " + animals);

 // Using clear()

 animals.clear();

 System.out.println("Vector after clear(): " + animals);

 }

}
Run Code

https://www.programiz.com/java-programming/online-compiler

Output

Initial Vector: [Dog, Horse, Cat]

Removed Element: Horse

New Vector: [Dog, Cat]

Vector after clear(): []

Others Vector Methods

Methods Descriptions

set() changes an element of the vector

size() returns the size of the vector

toArray() converts the vector into an array

toString() converts the vector into a String

contains() searches the vector for specified element and returns a boolean result

Introduction for File Handling

Java में File Handling के लिए java.io इस package का इसे्तमाि लकया जाता है | java.io package पर

input.output के लिए सभी classes मौजूद होते है |

Program में File Handling के लिए streams का इसे्तमाि लकया जाता है |

Java के java.io package ऐसे classes है लजनको दो streams में लिभालजत लकया गया है |

1. Byte Streams

2. Character Streams

